Global Genomic Medicine Collaborative

3rd GLOBAL GENOMIC MEDICINE COLLABORATIVE (G2MC) CONFERENCE

IMPLEMENTING GENOMIC MEDICINE INTO PRACTICE

APRIL 27-29 2017

DIVANI APOLLON PALACE AND THALASSO, ATHENS, GREECE
3rd GLOBAL GENOMIC MEDICINE COLLABORATIVE CONFERENCE

CONFERENCE ORGANIZING COMMITTEE

Geoff Ginsburg (Durham, NC, USA)
Robyn Ward (Melbourne, Australia; Co-chair)
George P. Patrinos (Patras, Greece; Local Chair)

Fahd Al-Mulla (Safat, Kuwait)
Vajira Dissanayake (Colombo, Sri Lanka)
Peter Goodhand (Montreal, Canada)
Theodora Katsila (Patras, Greece)
Bruce Korf (Birmingham, AL, USA)
Teri Manolio (Baltimore, MD, USA)
Alan Shuldiner (Tarrytown, NY, USA)

KEYNOTE SPEAKERS

Victor Dzau (Washington DC, USA)
Stylianos Antonarakis (Geneva, Switzerland)

SPEAKERS AND MODERATORS

Takeya Adachi (Tokyo, Japan)
Spiros Agathos (Urcuqui, Ecuador)
Fahd Al-Mulla (Safat, Kuwait)
François Bernier (Toronto, Canada)
Je_rey Braithwaite (Melbourne, Australia)
Mark Caul_eld (London, UK)
Wasun Chantratita (Bangkok, Thailand)
Collet Dandara (Cape Town, South Africa)
Vajira Dissanayake (Colombo, Sri Lanka)
Geoff Ginsburg (Durham, NC, USA)
Peter Goodhand (Montreal, Canada)
Sue Hill (London, UK)
Magnus Ingelman-Sundberg (Stockholm, Sweden)
Federico Innocenti (Chapel Hill, NC, USA)
Said Ismail (Doha, Qatar)
Summer Kahlon (Satellite beach, FL, USA)
Bruce Korf (Birmingham, AL, USA)
Dhavendra Kumar (Cardiff, Wales)
Guilherme Suarez-Kurtz (Rio de Janeiro, Brazil)
Alberto Lecaros (Santiago, Chile)
Yixue Li (Shanghai, P.R. China)
Catalina Lopez-Correa (Quebec, Canada)
Laura Lyman Rodriguez (Baltimore, MD, USA)
Teri Manolio (Baltimore, MA, USA)
George P. Patrinos (Patras, Greece)
Markus Paulmichl (Vienna, Austria)
Sir Munir Pirmohamed (Liverpool, UK)
Martin Reese (Oakland, CA, USA)
Gad Rennert (Haifa, Israel)
Gabriella Repetto (Santiago, Chile)
Ron H. van Schaik (Rotterdam, the Netherlands)
Alan Shuldiner (Tarrytown, NY, USA)
Andrew Sinclair (Melbourne, Australia)
Jesse Swen (Leiden, the Netherlands)
Patrick Tan (Durham, NC, USA)
Domenica Taruscio (Rome, Italy)
Aspasia Tsezou (Larissa, Greece)
Joris Veltman (Newcastle, UK)
Robyn Ward (Melbourne, Australia)
Grant Wood (Montreal, Canada)
Sarah Wordsworth (Oxford, UK)
Marc S. Williams (Philadelphia, PA, USA)
3rd GLOBAL GENOMIC MEDICINE COLLABORATIVE CONFERENCE

GlobaI Gennomic Medicine Collaborative

SCIENTIFIC PROGRAM

DIVANI Apollon Palace & Thalasso
Leof. Vouliagmenis 10, Vouliagmeni, Athens 166 71 GREECE

DAY 1: APRIL 27, 2017

10:00–13:00
Registration - [Location: Platon Foyer]

13:00–13:10
Welcoming Remarks - [Location: Platon]
Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine; Professor of Medicine, Biomedical Engineering and Pathology, Duke University, USA

Robyn Ward
Deputy Vice-Chancellor (Research) and Vice President (Research)
The University of Queensland, Australia

George P. Patrinos
Associate Professor of Pharmacogenomics and Pharmaceutical Biotechnology
University of Patras, Greece

13:10-13:25
Welcome from Hellenic Association of Medical Geneticists
[Location: Platon]
Aspasia Tsezou
President
Hellenic Association of Medical Geneticists, Greece

13:25-13:55
Keynote Lecture #1 [Location: Platon]
Victor Dzau
President
National Academy of Medicine, USA

Session I: Large-Scale National Sequencing Programs: Impact on Clinical Medicine

Moderator: Alan Shuldiner, Vice President, Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., USA - [Location: Platon]

14:00 The Qatar Genome Program: An Overview
Said Ismail
Programme Manager
Genome Qatar, Qatar

14:15 United States: PMI and Million Veterans Program
Teri Manolio
Director, Division of Genomic Medicine
National Human Genome Research Institute, USA

14:30 China’s Precision Medicine Initiative
Yixue Li
Professor
Shanghai Institutes for Biological Sciences, China

14:45 UK: 100,000 Genomes Project
Mark Caulfield
Co-Director
William Harvey Research Institute
Barts and the London School of Medicine and Dentistry, UK

15:00 Australian Genomics Health Alliance: implementing genomics into health care
Andrew Sinclair
Deputy Director
Murdoch Children's Research Institute, Australia

15:15 The Clalit Israeli 100K Personalized Medicine RCT
Gad Rennert
Director
Clalit National Israeli Cancer Control Center, Israel

15:30 Panel discussion
Opening remarks: Chen-Yang Shen
Chief Executive
Taiwan Biobank, Taiwan
Session II: Progress in Diagnosing Rare Diseases – International Opportunities

Moderator: Teri Manolio, Director, Division of Genomic Medicine, National Human Genome Research Institute (USA) - [Location: Platon]

16:15

Undiagnosed severe intellectual disability

Joris Veltman
Director,
Institute of Genetic Medicine
Newcastle University, UK

16:30

Undiagnosed Diseases Network International

Domenica Taruscio
Director
Istituto Superiore di Sanita (ISS), Italy

16:45

Next Generation Sequencing for rare pharmacogenomics variants

Magnus Ingelman-Sundberg
Professor
Karolinska Institutet, Sweden

17.00

Japan’s Initiative on Rare and Undiagnosed Diseases (IRUD): Towards integrative diagnosis network for universal healthcare system

Takeya Adachi
AMED Program Officer
Japan Agency for Medical Research & Development (AMED), Japan

17:15

Enhanced Care for Rare Diseases Canada

François Bernier
Associate Professor,
Department of Medical Genetics
Alberta Children’s Hospital, Canada

17:30

The University of Alabama at Birmingham Undiagnosed Diseases Program

Bruce Korf
Wayne H. and Sara Crews Finley Chair in Medical Genetics Professor and Chair,
Department of Genetics
University of Alabama, Birmingham, USA
17:45 - 18:15 Panel discussion

18:30 WELCOME COCKTAIL RECEPTION [Location: Swimming Pool]

DAY 2: APRIL 28, 2017

08:15 Opening Remarks - [Location: Platon]
Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine, Professor of Medicine, Biomedical Engineering and Pathology
Duke University, USA

Robyn Ward
Deputy Vice-Chancellor (Research) and Vice President (Research)
The University of Queensland, Australia

08:20 Keynote Introduction [Location: Platon]
George P. Patrinos
Associate Professor of Pharmacogenomics and Pharmaceutical Biotechnology, University of Patras, Greece

08:25 Keynote Lecture #2 [Location: Platon]
Stylianos Antonarakis
Professor and Chairman of Genetic Medicine
University of Geneva Medical School, Switzerland

Session III: National Genomic Medicine Programs: Implementation

Moderator: Geoff Ginsburg, Director, Duke Center for Applied Genomics & Precision Medicine, Professor of Medicine, Biomedical Engineering and Pathology, Duke University - [Location: Platon]

09:00 Kuwait Genome Project
Fahd Al-Mulla
Director of Genomic Medicine Center and Professor of Molecular Pathology
Kuwait University, Dasman Diabetes Institute, Kuwait
09:15
Implementing Genomic Medicine in Sri Lanka
pre-taped video presentation
Vajira Dissanayake
Chair & Professor of Anatomy and Medical Geneticist
University of Colombo, Sri Lanka

09:30
South America
Gabriella Repetto
Director, Center for Genetics and Genomics
Universidad del Desarrollo, Chile

09:45
The economics of next-generation sequencing
Sarah Wordsworth
Associate Professor,
Oxford University, UK

10:00
National Scale Precision Medicine in Singapore
Patrick Tan
Professor, Cancer and Stem Cell Biology Program
Duke NUS Medical School, Singapore

10:15
IGNITE network
Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine; Professor of Medicine,
Biomedical Engineering and Pathology
Duke University, USA

10:30
Panel discussion

Session IV: Data Science (with GA4GH)

Moderators: Peter Goodhand, Executive Director, Global Alliance for Genomics and Health, Grant Wood, Senior IT Strategist, Clinical Genetics Institute at Intermountain Healthcare - [Location: Platon]

11:00
Accurate and Rapid WGS Interpretation with Fabric Genomics
Martin Reese
Co-founder, President, and Chief Scientific Officer
Fabric Genomics, USA

11:15
Clinical contextualization of lab results
Marc S. Williams
Director, Genomic Medicine Institute
Geisinger Health System, USA
11:30 Oracle Family Health History Project
Summer Kahlon
Director, Care Innovation
Oracle Health Sciences, USA
Grant Wood
Senior Strategist
Intermountain Healthcare Clinical Genetics Institute, USA

11:45 Establishing a Longitudinal Genetic/Genomic-Based EHR for Clinical Care
Peter Goodhand
President, Ontario Institute for Cancer Research
Executive Director, Global Alliance for Genomics and Health, Canada

12:00 Q&A with session speakers and audience
Discussion topic: What are the issues in your country to accomplish the goals of a longitudinal genomic patient record?

12:30 LUNCH BREAK - [Location: Platon foyer]

Session V: Policy and Workforce Generation

Moderator: Robyn Ward, Deputy Vice-Chancellor (Research) and Vice President (Research), The University of Queensland, Australia, and Bruce Korf, Wayne H. and Sara Crews Finley Chair in Medical Genetics, Professor and Chair, Department of Genetics, University of Alabama, Birmingham
[Location: Platon]

13:30 The Implementation of Genomic Medicine in the NHS in England
Sue Hill
Chief Scientific Officer
NHS England, UK

13:45 Genomic Test Evaluation Frameworks
Robyn Ward
Deputy Vice-Chancellor of Research, and Vice President of Research
The University of Queensland, Australia
14:00 Implementing Genomics in the Health Care System in Canada
Catalina Lopez-Correa
Chief Scientific Officer and Vice President, Sectors Genome British Columbia, Canada

14:15 More than regulatory challenges for genomic medicine in Latin America
Alberto Lecaros
Observatory for BioEthics and Law
Universidad del Desarrollo
Santiago, Chile

14:30 Establishing a Latin American Translational Genomics Institute
Spiros Agathos
Dean, School of Life Sciences
Yachay Tech University, Ecuador

Jeffrey Braithwaite
Professor of Health Systems Research, Founding Director, Australian Institute of Health Innovation
Macquarie University, Australia

15:00 Fostering Genomic Literacy for Today and Tomorrow
Laura Lyman Rodriguez
Director, Division of Policy, Communications, and Education, National Human Genome Research Institute (NHGRI), USA

15:15 Genomic education for empowering the Multi-Disciplinary Healthcare
Dhavendra Kumar
Visiting Professor, Genomic Policy Unit, Faculty of Life Sciences & Education, University of South Wales, UK; Consultant in Clinical Genetics, University Hospital of Wales, UK

15:30 Panel discussion

16:00 BREAK
16:15–17:30

Breakout Sessions

A) **National Programs: Implementation** - [Location: Platon]
 Chair: Alan Shuldiner
 Vice President, Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., USA

B) **Pharmacogenomics** - [Location: Platon]
 Chair: George P. Patrinos
 Associate Professor of Pharmacogenomics and Pharmaceutical Biotechnology; University of Patras, Greece

C) **Policy** [Location: Athina A]
 Chair: Robyn Ward
 Deputy Vice-Chancellor of Research, and Vice President of Research, The University of Queensland, Australia

D) **Education and Workforce** [Location: Athina B]
 Chair: Bruce Korf
 Wayne H. and Sara Crews Finley Chair in Medical Genetics; Professor and Chair, Department of Genetics, University of Alabama, Birmingham, USA

E) **IT/Bioinformatics & Family Health History Project** [Location: Poseidon A]
 Chairs: Peter Goodhand
 President, Ontario Institute for Cancer Research; Executive Director, Global Alliance for Genomics and Health, Canada
 Grant Wood
 Senior Strategist, Intermountain Healthcare Clinical Genetics Institute, USA

F) **Evidence** [Location: Poseidon B]
 Chairs: Marc Abramowicz
 Professor and Head, Dept. of Medical Genetics
 Université. Libre de Bruxelles, Brussels
 Fahd Al-Mulla
 Director of Genomic Medicine Center and Professor of Molecular Pathology, Kuwait University, Dasman Diabetes Institute, Kuwait
18:00 Depart for Dinner [meet in hotel lobby]
Tour of Acropolis Museum

20:00 DINNER
Location: Acropolis Museum

DAY 3: APRIL 29, 2017

07:00–08:00 G2MC Steering Committee Meeting (by invitation only) - [Location: Poseidon A]

08:00 Opening Remarks - [Location: Platon]
Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine; Professor of Medicine, Biomedical Engineering and Pathology
Duke University, USA
Robyn Ward
Deputy Vice-Chancellor of Research, and Vice President of Research
The University of Queensland, Australia

Session VI: Pharmacogenomics in the Clinic: International Progress
Moderator: George P. Patrinos, Assistant Professor of Pharmacogenomics and Pharmaceutical Biotechnology, University of Patras [Location: Platon]

08:10 Implementation of Pharmacogenomics in the Clinic
Sir Munir Pirmohamed
Professor
University of Liverpool, Wolfson Institute of Personalized, Medicine, UK

08:20 Genomic Medicine, Safety First
Federico Innocenti
Associate Director, Center for Pharmacogenomics & Individualized Therapy, Associate Professor, University of North Carolina Chapel Hill, USA

08:30 The Ubiquitous Pharmacogenomics (UPGx) project
Jesse Swen
Associate Professor, Department of Clinical Pharmacy & Toxicology
Leiden University Medical Center, Netherlands
08:40
PGx Activities in Latin America
Guilherme Suarez-Kurtz
Professor
Instituto Nacional de Câncer, Brazil

08:50
Public Health Pharmacogenomics
George P. Patinos
Associate Professor of Pharmacogenomics and
Pharmaceutical Biotechnology
University of Patras, Greece

09:00
Implementation of Pharmacogenomics in the Austrian Healthcare System
Markus Paulmichl
Medical Advisor
Centre for Health and Bioresources, Austrian Institute of Technology, Austria

09:10
European Society of Pharmacogenomics
Ron van Schaik
Full Professor, Pharmacogenetics
Erasmus Medical Center, Netherlands

09:20
Pharmacogenomics research and implementation in Africa
Collet Dandara
Professor, Department of Clinical & Laboratory Sciences, University of Cape Town, South Africa

09:30
The SEAPharm Consortium
Wasun Chantratita
Associate Professor, Department of Pathology
Ramathibodi Hospital, Thailand

09:40
Panel discussion

10:15-10:30
BREAK

10:30–12:00
Breakout Reports and Discussion [Location: Platon]
Moderator: Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine; Professor of Medicine, Biomedical Engineering and Pathology
Duke University
12:00–13:00 LUNCH [Location: Swimming Pool]

WORKING LUNCH [Location: Poseidon A]
(G2MC Steering Committee Meeting - by invitation only)

Session VII: Implementation of Genomic Medicine by the Private Sector

Moderator: Geoff Ginsburg, Director, Duke Center for Applied Genomics & Precision Medicine, Professor of Medicine, Biomedical Engineering and Pathology, Duke University [Location: Platon]

13:15 De novo assembly of Asian diploid genome (AK1)
Changhoon Kim
Director, Bioinformatics Institute
Macrogen, South Korea

13:30 The Science May be the Easy Part: Challenges and Solutions in Implementing a Molecular Diagnostic Test
James Wingrove
Vice President, Technical Operations, Head of Research, CardioDx, USA

13:45 From human genetic insights to drug discovery impact
Nadeem Sarwar
President
Eisai AiM Institute, USA

14:00 Genomic Medicine Enabled Through Partnership
David Bentley
Vice President and Chief Scientist
Illumina, UK

14:15 Closing remarks
Geoff Ginsburg
Director, Duke Center for Applied Genomics & Precision Medicine, Professor of Medicine, Biomedical Engineering and Pathology, Duke University, USA
Robyn Ward
Deputy Vice-Chancellor (Research) and Vice President (Research)
The University of Queensland, Australia

14:30 MEETING ADJOURNS
Japan’s Initiative on Rare and Undiagnosed Diseases (IRUD): Towards integrative diagnosis network for universal healthcare system

Takeya Adachi
AMED Program Officer, Japan Agency for Medical Research & Development (AMED)

To identify rare—and often undiagnosed—diseases, we must integrate systematic diagnosis by medical experts with patients’ phenotypic/genetic data matching, thereby solving the “N-of-1” problem. Initiative on Rare and Undiagnosed Diseases (IRUD), having been launched and coordinated by AMED since 2015, is an ambitious challenge in this context to construct a comprehensive medical network and establish useful clinical databases upon the Japanese universal healthcare system, resulting in 200 collaborating hospitals and 2200+ patients registered. We could successfully diagnosis 22% of patients prior to WES/WGS and identify the causative variants in 30-40% of the rest by WES/WGS. Furthermore, Japan has already taken measures for specially defined rare diseases, called “Nan-Byo” in Japanese. IRUD is unique in that it takes advantage of this long-term asset. We believe in its significant contribution to the international endeavors, involving players in basic research, applied research, and social implementation.

Establishing a Latin American Translational Genomics Institute

Spiros N. Agathos and Juergen Reichardt
Yachay Tech University, San Miguel de Urcuquí, Ecuador

Yachay Tech is the first research-intensive University in Ecuador, founded in 2014 as part of a national plan towards a knowledge-based economy. Within this initiative, Yachay Tech is establishing a Translational Genomics Institute in cooperation with the Golden Helix Foundation, a non-profit organization disseminating an understanding of human genetics and
promoting the clinical application of pharmacogenomics in medical practice. The two institutions will carry out research and teaching in Genomics related to Systems Biology, Bioinformatics, Population Genetics, Pharmacogenomics and Genomic & Translational Medicine. The ‘Translational Genomics Institute’ at Yachay Tech aspires to be a center of reference for Genomics in South America for analyzing genetic data on disease incidence and guiding research and public health policies of relevance to various populations and ethnic groups. In addition, the Institute will be a key partner in research projects addressing the tremendous wealth of the continent’s biodiversity for novel biopharmaceuticals.

Genomic Medicine Enabled Through Partnership

David R Bentley & Collaborators

Illumina Inc.

Partnerships between medical, academic and commercial organisations are an essential feature of implementation of genomic medicine. In partnership with Genomics England and other collaborators, we have established an infrastructure for large scale whole genome sequencing (WGS) and its application to (a) rare and undiagnosed genetic disease and (b) cancer. To date ~30,000 genomes have been returned as part of the 100,000 Genomes Project in the UK. Technology development is focused on sequencing clinical samples, improving variant calling, annotation and reporting, and in developing robust workflows for returning data quickly to the clinic. Utilization of PCR-free WGS data supports detection of complex germline variants (e.g. copy number variants and repeat expansions) and significantly increases diagnostic yield. WGS of cancer also maximizes detection of the range of somatic mutations (including structural rearrangements and mutational signatures) in cancer. The ecosystem for large scale WGS is applicable in national and regional situations to enable the effective implementation of WGS for genomic medicine.

Implementation Science Meets Genomic Medicine: Ideas, Issues & Innovations

Jeffrey Braithwaite

Australian Institute of Health Innovation, Macquarie University, Australia

The genomics revolution is well underway and the Global Genomic Medicine Collaborative (G2MC) has assembled an impressive array of collaborators in countries across the world to further the overarching objective of implementing genomic
medicine in clinical care. In this paper, the key word is “implementation” and the key phrase is “implementation science”. Implementation science is an embryonic discipline assembling theories, tools and translational ideas so that we can understand how take-up, adoption and spread of new practices work in different contexts and settings. In this presentation we discuss how implementation science is contributing to the G2MC’s work, and we look at a selection of models, studies and theories that can help take research from the bench-to-bedside. We are interested in providing tools that help us conceptualize improvement cycles over time, the spread of better practices and going full scale in adopting genomic medicine in clinical care.

Taiwan Biobank for the Health of the Next Generation

Chen-Yang Shen
Taiwan BioBank, Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

To understand the relationship between genetics, environmental exposure, diet, and the etiology/progression of chronic disease, the Taiwan Biobank (TWB) is establishing a scientific infrastructure accessible to biomedical researchers. Through the recruitment and follow-up of a cohort of 200,000 individuals from the general population and another of 100,000 patients with chronic diseases from medical centers, the Taiwan Biobank aims to improve the health of future generations and facilitate genomic research in Taiwan. Currently, more than 80,000 participants from different parts of Taiwan have been recruited, and more than 1,750,000 of biospecimens, including blood, urine DNA and tumor tissues, had been collected. Whole-genome genotyping of more than 20,000 individuals using TWBv1.0 chip (653,291 SNPs, specifically for the Han Chinese in Taiwan) was obtained. An investigation of the population structure in an initial freeze of 10,801 unrelated TWB participants shows that the Taiwanese Han Chinese clustered into three cline groups: 5% were of northern Han Chinese ancestry, 79.9% were of southern Han Chinese ancestry, and 14.5% belonged to a third (T) group. We also find that this T group is genetically distinct from neighboring Southeast Asians and Austronesian tribes but similar to other southern Han Chinese. Interestingly, high degree of LD between HLA haplotype A*33:03-B*58:01 and SNPs across the MHC region was observed in subjects with T origin, but not in other Han Chinese. Furthermore, whole genome sequencing of 1,500 individuals was completed. This work aims at (1) establishing a local reference for imputation and (2) detecting
population-specific rare variants that would be of particular importance for the understanding of local diseases. Genomic features are currently under investigation. The release of TWB information and specimen would lead to the development of precision medicine in Taiwan, by which the progressive elucidation of risk factors and the molecular pathogenesis of disease will both improve disease prevention/prediction and facilitate therapy development.

Implementing Genomic Medicine in Sri Lanka

Vajira H. W. Dissanayake

Medical Geneticist; Chair Professor of Anatomy; Director, Human Genetics Unit; Chair, Specialty Board in Biomedical Informatics, Faculty of Medicine, University of Colombo, Sri Lanka

Widespread adoption of Genomic Medicine in clinical practice would depend on effective deployment of next generation sequencing technologies and bioinformatics tools in relatively ‘small’ genetic centers. Recent advances in next generation sequencing technologies and the associated cost reduction in exome, clinical exome, and gene panel sequencing has made it possible for such centers to access these technologies. There are however many challenges that one would encounter in the process of implementing Genomic Medicine. The Human Genetics Unit of the Faculty of Medicine, University of Colombo is one of the few centers in the South Asian region to have successfully implemented Genomic Medicine. We routinely sequence clinical exomes and cancer gene panels in house on Illumina’s MiSeq platform and perform our own bioinformatics analysis on a bioinformatics pipeline established in house using free and open source tools. We have also established the protocol for providing genetic counseling using genomic test results. Although we have successfully implemented Genomic Medicine, in the process, we have had to experience challenges related to interpreting results (stemming from the fact that our population is not represented in international genetic databases), ethical issues, and issues related to cost and timeliness of accessing technical services (as they are delivered in countries like Sri Lanka through third parties). In this talk I shall share our experience with the participants. I hope that it would help understand what is required to take Genomic Medicine from large genome centers to small genetic clinics as well as inform what is required to ensure that there is equitable distribution of access to Genomic Medical services across the world to facilitate implementing Genomic Medicine globally.
The IGNITE network: a model for genomic medicine implementation and research

Geoffrey S Ginsburg MD PhD
Director, Duke Center for Applied Genomics and Precision Medicine
Professor of Medicine, Pathology and Biomedical Engineering
Duke University, USA

Challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence base mutation discovery, and creating novel educational approaches. Lessons learned and solutions to barriers in the implementation of genomic medicine programs will be described as well as the development of a centralized ‘tool box’ for use by the genomic medicine community.

Implementation of rare genetic variants

Magnus Ingelman-Sundberg
Karolinska Institutet

Results from analyses of WGS and WES sequencing efforts reveal that about 40% of all LOF and missense mutations of importance for prediction of drug response are rare. Pharmacokinetic analyses in twins also reveal that 50% of the interindividual inherited variation in metoprolol and toresimide pharmacokinetics are caused by mutations not routinely analyses in the pharmacogenetic platforms currently used. The talk will consider the genes and drugs of importance where NGS based sequencing data would substantially add information beyond the current platforms to facilitate individualized drug therapy.

Genomic Medicine, Safety First

Federico Innocenti
Associate Director, Center for Pharmacogenomics and Individualized Therapy; Associate Professor, University of North Carolina Chapel Hill, USA
By putting the patient, rather than the disease, at the center of personalized care, the concept of safety gains a much wider connotation. Hippocrates' “primum non nocere”, “first, do not harm” remains a fundamental guiding principle of any intervention in medical care. The suffering and discomfort experienced by patients because of the symptoms related to the adverse events of drug treatment should never be discounted. Adverse events have a significant burden on the quality of life of the patient and the families. They reduce confidence in the treatment and might demoralize the patient and the trust on the efficacy of therapies that should improve patient well-being, not reducing it. And we should not forget that, in this era of advanced technologies integrated into patient care, patients treated with anti-cancer therapies are still at risk of losing their lives as a result of the medication that should treat their cancers. Severe adverse events often lead to permanent discontinuation of therapy. Mild-to-moderate toxicities, in addition to affecting quality of life, can also reduce the intensity of the regimen. Most cancer patients receive multi-drug regimens, and toxicity from one drug can halt also the whole regimen. When the goal of treatment is to maintain acceptable quality of life and prolong survivorship (or survival), patient discomfort (from gastrointestinal effects) or cosmetic changes (acne or skin rash), for example, even when they are not severe, might reduce adherence to oral therapy, increasing the chance of recurrence of disease. This presentation will describe the place for genetic analyses to increase patient safety, and how they have the potential of improving safety of cancer drugs in several ways. These aspects are of particular importance for implementation, as access to genetic profiling is becoming more common for patients.

The Qatar Genome Program: An Overview

Said Ismail
Manager, Qatar Genome Program, Qatar Foundation

The Qatar Genome Program (QGP) is a national project spearheading the implementation of advanced precision medicine in Qatar. The project is designed around a comprehensive strategy built on seven building blocks: the Qatar Biobank; building genomic infrastructure; drafting regulations and policies; forging networks of research partnerships; establishing national genomic data network; building local human capacity; and finally integration of genomics into the healthcare system. The pilot phase was launched in September 2015, with the goal of revealing the key features of the Qatari genome by sequencing 6,000 genomes by Mid 2017. Other pilot phase goals include promoting
genomic research in Qatar through research grants in addition to encouraging multicenter research teams to mine the data being produced. QGP is also taking the lead in building local human capacity through its internship programs, workshops and symposia, as well as taking the initiative in starting new graduate programs in genomic medicine and genetic counseling in collaboration with local universities. Additionally, QGP is involved in drafting a national policy on genomic research ethics and regulations.

De novo assembly of Asian diploid genome (AK1)

Jeong-Sun Seo¹⁻⁵,⁸, Arang Rhie¹⁻³,⁸, Junsoo Kim¹⁻⁴,⁸, Sangjin Lee¹⁻⁵,⁸, Min-Hwan Sohn¹⁻³, Chang-Uk Kim¹⁻³, Alex Hastie⁶, Han Cao⁶, Ji-Young Yun¹⁻⁵, Jihye Kim¹⁻⁵, Junho Kuk¹⁻⁵, Gun Hwa Park¹⁻⁵, Juhyeok Kim¹⁻⁵, Hanna Ryu⁴, Jongbum Kim⁴, Mira Roh⁴, Jeonghun Baek⁴, Jong-Yeon Shin¹⁻⁵, Jonas Korlach⁷, Changhoon Kim⁴

¹Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 110-799, Korea; ²Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine; ³Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea; ⁴Bioinformatics Institute and ⁵Genome Institute, Macrogen Inc., Seoul 153-023, Korea; ⁶BioNano Genomics, San Diego, California, USA; ⁷Pacific Biosciences of California, Inc., Menlo Park, California 94025, USA; ⁸These authors contributed equally to this work

With maturation of the recent high-throughput and/or single molecule sequencing technologies, the hope for medical usage of genome is ever increasing. Thus, as a part of Asian Genome Project, we built a new Asian reference genome AK1. In this work, we discuss the de novo construction of an Asian diploid genome with single molecule real time (SMRT) sequencing, single molecule optical-mapping, and microfluidic-based linked reads. The use of complementary single molecule technologies yields assembly with contig N50 of 17.95 Mb and scaffold N50 of 44.8 Mb. The AK1 assembly, notably, spans 7 chromosomal arms with essentially single scaffolds, showing high contiguity of the assembly and covers many gaps in the GRCh38. There are 18,210 structural variations (SVs), among which 5,294 insertions and 3,983 deletions were novel. Many of them were Asian specific SVs. In addition, the assembly was de novo phased by using the linked-reads and legacy BAC clones. The final phased block N50 was larger than 10 Mb. Our result shows ethnicity-specific, difficult-to-find variations can be effectively examined by constructing de novo assembly of diploid human genomes with long
range information and single molecule technologies.

The University of Alabama at Birmingham Undiagnosed Diseases Program

Bruce R. Korf
Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA

The UAB Undiagnosed Diseases Program (UDP) has been in operation since October 2013. It is not part of the NIH-funded Undiagnosed Diseases Network, and is funded directly by UAB. The program provides evaluations of both children and adults and includes four part-time physicians, two nurse-practitioners, a genetic counselor, and a genetic counseling assistant. There are also multiple consultants representing specialties in both pediatrics and adult medicine. Since its inception, the program has received 326 referrals. After review of records and triage of cases that the program does not deem appropriate for evaluation, 131 patients were enrolled for evaluation. At present 77 had completed evaluations, and diagnoses were achieved for 45. The program performs whole genome or whole exome sequencing on most patients, unless the nature of the clinical problem is such that this is deemed unproductive. Diagnoses have included genetic conditions, unrecognized malignancy, and non-genetic medical conditions such as rheumatological or neurological diagnoses. Evaluations are performed on a fee-for-service basis, though genomic analysis is done on a research basis using institutional funds, and pathogenic findings are replicated in a CLIA and CAP certified clinical laboratory. UAB is now launching a new program, the “Alabama Genomic Health Initiative,” which is funded by the state of Alabama. This program will provide genotyping using the Illumina Global Screening Array on 10,000 individuals, with return of results of medically actionable pathogenic variants. In addition, we plan to offer genome sequencing to approximately 250 individuals with undiagnosed disorders as part of this program over the next five years. This will permit us to expand the genomic reach of the UDP, and also will result in a research database. In addition, we are planning to develop a drug screening program to focus on pathogenic variants identified in the UDP for which there are currently no therapeutic options.

Genomic education for empowering the Multi-Disciplinary Healthcare

Dhavendra Kumar
Institute of Medical Genetics, University Hospital of Wales, Cardiff & The Genomic Policy Unit, The University of South Wales, UK
The treatment and management of rare genetic disorders require a coordinated and systematic effort of many skilled clinicians, nurses and other health professionals. The role of the clinical genetics team is now increasingly recognized in the multidisciplinary team (MDT) approach in the treatment and management of rare chromosomal (for example The 22q Deletion Syndrome) and monogenic disorders (for example Mendelian Inherited Cardiovascular Conditions). Outcomes and experience of these model MDT approaches have been very positive with wide appreciation and acknowledgement across the UK National Health Service.

All MDT clinicians and health professionals provide invaluable input. Most MDT members have been encouraged and supported to acquire basic skills and competencies in eliciting and interpreting the family history and acquiring/assembling the necessary clinical and laboratory evidence for making the diagnosis and instituting the management plan. Increasingly, all non-genetic MDT members are encouraged to learn and understand basics of traditional and non-traditional inheritance, understand the genetic and molecular mechanisms underpinning the phenotype variation, grasp the basis and limitations of conventional and next generation sequencing (NGS) genetic laboratory diagnosis, interpretation of genetic results with particular reference to pathogenicity of NGS mutations or variants. New opportunities for genetic and genomic education are now made available through ‘in house’ formal and informal seminars, workshops and structured post graduate Diploma/ Masters level courses. The experience and outcomes of MDT based specialist healthcare have shown positive gains in the UK NHS. The UK 100,000 Genomes Project lays emphasis on genetic and genomic education directed at different levels of the healthcare manpower for effective and efficient specialist healthcare delivery, particularly for rare inherited diseases.

Pharmacogenomics in Latin American Admixed Populations

Guilherme Suarez-Kurtz

Brazilian Pharmacogenomics Network, Rio de Janeiro, Brazil

The heterogeneous Latin American population, with European, African and Amerindian ancestral roots provides a model case for exploring the impact of population admixture on the frequency distribution of polymorphisms in pharmacogenes, design and interpretation of pharmacogenomics trials. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of 1936 pharmacogenetic polymorphisms and the individual proportions of Native American,
African and European biogeographical ancestry in healthy adults from the two most populous Latin American countries, Brazil and Mexico. The Brazilian cohort was stratified into census categories of "Race/Color", as White, Brown and Black, whilst the sample from Mexico comprised Native American Zapotecs and self-identified Mestizo individuals from 5 geographically distant regions. A substantial variation in individual ancestral proportions across and within census categories in Brazil, and geographic regions in Mexico was observed. Analysis of the extent of genetic differentiation (measured as FST values) revealed a long tail of markers showing large frequency differences in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as genes affecting drug pharmacodynamics, such as VKORC1. Non-linear piece-wise smooth logistic regression modeling revealed that the odds of having a variant of pharmacogenomic interest vary over ranges determined by the frequency of the variant in the relevant ancestral populations, i.e. mainly Europeans and Africans for Brazilians, and European and Native Americans for Mexicans. The larger the difference in frequency between the relevant parental populations, the more inappropriate it is to refer to a "Brazilian", "Mexican", or "Latino/Hispanic" allele frequency. Population admixture of Latin American adds complexity to, but also creates advantages for pharmacogenomics research, including the opportunity to explore pharmacogenomic associations in individuals with heterogeneous genetic ancestry under similar environmental and socio-economical conditions, and to gather information on peoples that are excluded or under-represented in clinical drug trials. These opportunities will be illustrated with data for warfarin and tacrolimus in Brazilian patients.

More than regulatory challenges for genomic medicine in Latin America

JA Lecaros
Director Observatory for Bioethics and Law

Regulatory gaps in genomic medicine in Latin America are only one of the reasons explaining the disparities and inequities in the provision of genetic services and in genetic research compared to the developed countries. The regulatory challenges of our region to improve genomic medicine must be taken with a collective view and not country by country. It is not enough to improve national legislation. It is also necessary to create an institutional framework to discuss, design and apply public health policies with effective participation of citizens, medical genetics professionals, researchers and other stakeholders relevant to the genomic medicine of
our region. Finally, the improvement of our legislation must take into account, at the time of its application, the relevant role played by intermediary bodies such as IRBs, genetic counselors and scientific and medical associations with their best practice guidelines. The idea is that the legislation be clear and precise but not too extensive, leaving in these intermediate bodies the case-by-case application of genetic rights.

Precision medicine initiative in China called international

Yixue Li
CAS-MPG Partner Institute for Computational Biology (PICB); Shanghai Institutes for Biological Sciences (SIBS); Chinese Academy of Sciences (CAS)

Almost exactly one year after US President Barack Obama announced the Precision Medicine Initiative, China is finalizing plans for its own country. In this national Precision Medicine Initiative (PMI) project, huge amounts of clinical data, from genome sequences to health records will be produced to help determine how drugs affect people in different ways. One and half years past after announcement of PMI in China, a lot of Universities, hospitals, institutions and companies involved in the project and line up to produce, gather and analyze the data, some observers worry that problems with the nation's health-care related infrastructures, especially the problems resulted from lacking of infrastructures of National Bio-Medical Database Systems. Most of people realize that China needs a national bio-medical database system to support PMI in China like those databases maintained by NCI, NCBI, EBI and ICGC which take the responsibilities to gather, manage, clean, curate, deliver and share the data. Here we give a short instruction to PMI in China, and some initiatives for setting up national infrastructure of Bio-Medical Database Systems. Finally, we would like to call international collaborations, collaborative projects and strategies that will help to design and set up Chinese National infrastructures of Bio-Medical Database System, serve the global community to share data, set up related standards and take genomic advances to improve clinical care.

Implementing Genomics in the Health Care System in Canada

Catalina Lopez Correa
CSO Genome British Columbia

Canada in general, and the province of British Columbia in particular, have long recognized the potential of genomics and its applications in clinical practice and in the healthcare system overall. The Canadian Genomics Enterprise has made significant investments in genomics, at
a research and application levels, over the last 17 years. Canada now boats a vibrant research and clinical innovation ecosystem including core genomic platforms, world leading research and clinical centers, patient registries and electronic medical records. All these investments are now paying off as genomics is finding its way to the clinic in BC and in Canada. Examples will be provided on the applications of genomics in the areas of cancer, rare diseases, infectious diseases and pharmacogenomics, the four areas recognized globally as the most “clinically ready” and most likely to benefit patients and to have a positive economic impact in the health care system. Aside from focusing on these therapeutic areas, Genome BC is also developing initiatives in four cross-cutting themes that have been identified as key elements to help advance clinical implementation of genomics: Education, Big Data, Capacity and Access.

The US Precision Medicine Initiative and Million Veteran Program

Teri Manolio
Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD

The Precision Medicine Initiative Cohort Program, recently renamed the “All of Us” Research Program, is an ambitious project to recruit and study the health and medical care of one million or more volunteers reflecting the broad diversity of the U.S. *All of Us* will begin by recruiting participants from 8 regional medical centers, 6 Federally Qualified Health Centers, and roughly 20 sites in the Department of Veterans Affairs Million Veteran Program. Individuals can also sign up directly as “Direct Volunteers” and attend a local free-standing clinic for a brief examination. Data collection will begin with a limited set of standardized data from sources including questionnaires, electronic health records, a baseline physical evaluation, biospecimens, mobile/wearable technologies, and geospatial/ environmental data. Data types will grow and evolve as science, technology, and trust evolve. The program is expected to begin recruiting shortly and will take 3-4 years to recruit one million participants.

Accurate and Rapid WGS Interpretation with Fabric Genomics

Anthony Fejes, *Anna Lewis*, *Charlene Son-Rigby*, *Edward Kiruluta*, *Mark Yandell*, **Martin G. Reese**

* Fabric Genomics; ** University of Utah

Laboratories, healthcare systems, and country projects all share a need for an intelligent, modular and powerful
compute infrastructure in order to manage large-scale genomic interpretation, analysis, and clinical reporting. These projects typically include research, data mining, and clinical healthcare reporting components that require a broad array of tools and supporting resources. Additionally, there is a need for the preservation of patient genetic data for future re-interpretation and clinical studies. At the core of a precision medicine project is genome interpretation, which has to demonstrate both clinical utility and accuracy to improve patient care. In this talk, we will discuss Fabric Genomics’ Opal Clinical software platform, a scalable software-as-a-service (SaaS) solution for interpreting vast amounts of NGS data from panels, exomes, and genomes. We will highlight examples of genomic testing that are transforming medical care, such as the 100,000 Genomes Project in England and Rady Children’s Institute for Genomic Medicine (Rady Children’s). The 100,000 Genomes Project, spearheaded by Genomics England (GeL), is a country study aimed at identifying disease-causing genetic variants in patients and families with rare genetic diseases and cancer using WGS. Opal Clinical has provided GeL with potential causative candidates in 44.7% of cases. At the core of Opal Clinical are Fabric Genomics’ leading algorithms VAAST and Phevor, which are gene ranking methods developed and published in collaboration with the University of Utah. Another example that we will present will be from Dr. Stephen Kingsmore’s clinical group in pediatrics at Rady Children’s Hospital. That group has a goal of rapid genome sequencing and analysis, with a 24-hour turnaround time from blood sample to result for critically-ill pediatric patients. Fabric Genomics’ Opal STAT version of Opal prioritizes extremely urgent pediatric cases, and guarantees the delivery of comprehensive annotations on whole genomic data in less than 1 hour. We will present scientific results from these examples, as well as infrastructure features that address many concerns of scaling large scale genome projects, including data storage, scalability, data access, integrations, and regulatory requirements.

The Clalit Israeli 100K Personalized Medicine RCT

Gad Rennert
Director, Clalit National Personalized Medicine Program and National Cancer Control Center Professor and Chairman, Dept. Community Medicine & Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Technion

The genomic medicine approach is promoted as a game changer, potentially leading to better health
status of the population. The leading and overall aim of the planned trial is to test the value of incorporating personalized genetic information into routine clinical service. The study will be a randomized controlled trial where primary-care clinics will be randomized into intervention vs. usual care. Intervention will include education on genetics of the community and of the involved primary medical care teams, followed by enhanced exome testing of all insurees of the intervention clinics and employment of clinical actions that stem from the genetic test results (mostly identification of disease risk-alleles and pharmacogenetic treatment/health behavior modifiers). Our hypothesis is that the intervention arm of the study will experience reduced morbidity/mortality rates, will show better disease control indicators, improved quality of life and improved economic balance. Major “byproducts” of the project will involve mapping the genetic background structure of Israeli Jewish and non-Jewish populations to serve as reference for future discovery and identification of genetic variants associated with specific diseases and with response to medications. 40 primary care clinics with 250,000 adults serviced by them will be randomized into 20 intervention clinics and 20 usual care clinics. 100,000 people are expected to consent to be tested in the intervention arm. Testing will involve whole exome analysis supplemented with an extensive SNP-array (with DNA from buccal swabs) and potentially parallel testing of the microbiome using a stool sample.

Genomic Medicine in South America: current status
Gabriela Repetto, MD
Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile

In order to assess the current status of implementation of Genomic Medicine in South America, a survey was sent to presidents of each country’s Genetics Society and the Asociacion Latinoamericana de Genetica, requesting information on ongoing nationwide initiatives. Two countries have established databases on local genetic variation: www.bipmed.com (Brasil) and www.chilegenomico.cl. Three countries (Argentina, Ecuador, Uruguay) are developing platforms for high throughput sequencing. Disease-focused genomic initiatives are being carried out in Chile (lung cancer www.cemp.cl) and Argentina (rare disorders www.bitgenia.com). There is an Iberoamerican Network on Pharmacogenetics and Pharmacogenomics (www.ribef.com), focused on collaborative research in the field. At the public policy level, Peru, Colombia and Argentina have laws that promote access to diagnosis
and care for individuals with rare disorders; the Ministry of Health in Chile has convened a group of experts to develop a road map for the inclusion of Genomic Medicine in the country. Although the survey did not identify nationwide programs already using Genomic Medicine in the clinical setting, all these initiatives are gradually building relevant and necessary capacities for its development. Collaboration between countries should be encouraged to move the field forward and to allow individual patients and countries to benefit from genomics-led health care.

Fostering Genomic Literacy for Today and Tomorrow

Laura Lyman Rodriguez
Division of Policy, Communications & Education, NIH/NHGRI
000 Rockville Pike, 31 Center Drive, 20852, Bethesda, MD, USA

If genomic medicine is to be optimally integrated into clinical care, and society more broadly, a certain level of genomic literacy is required across health provider teams, and importantly among patients and the general public (i.e., the future workforce and patients-to-be). NHGRI has been focused on targeted outreach and educational support for students and health providers for some time, but with accumulating advances in genomic medicine approaches, the urgency and scope of opportunities to be pursued has increased. This talk will review NHGRI initiatives to improve genomic literacy in the recent past and preview exciting new opportunities to build a collaborative network and national campaign in this area across the learning life-span (from K to gray).

From human genetic insights to drug discovery impact
Nadeem Sarwar
President, Eisai Inc.

The opportunity provided by human genetics to disrupt the drug discovery process is now well recognized. Compelling data indicate that therapeutic targets supported by robust human genetic evidence are more likely to deliver effective new medicines than those that are not. Genetics and other sources of human biology data not only provide an opportunity for identification of novel drug targets more likely to work, but also for identification of patient sub-populations more likely to benefit. Despite this recognition, and despite considerable investment being made across sectors to harness the potential of human genetics and precision medicines, fully realizing a new paradigm in human genetics guided drug discovery requires three key changes to be implemented:
1. Removal of scientific silos to enable integration and innovation without borders
2. Supporting an ownership culture that rewards truth-seeking behavior
3. Entrepreneurial collaborative models that meet all stakeholders’ needs

Australian Genomics Health Alliance: implementing genomics into health-care.

Andrew Sinclair
Murdoch Children’s Research Institute, Royal Children’s Hospital and Dept. of Paediatrics, University of Melbourne, Melbourne, Australia

The Australian Genomics Health Alliance (AGHA) is a national network of clinicians, diagnosticians and researchers working towards the development of genomic medicine both within Australia, and in collaboration with international consortia. The AGHA is setting out a roadmap for the adoption of genomics into clinical care by undertaking research within four key programs of activity. Program 1: National diagnostic and translational research network; Program 2: Federated national genomic data repository; Program 3 Economics and policy development; Program 4: Genomic workforce education and ethics. The prospective collection and evaluation of data from patients recruited in each state within two disease flagships in rare disease and cancer will drive strong national diagnostic networks and provide robust economic and clinical evidence on patient health outcomes and cost effectiveness. This will inform the development of educational, ethical and policy recommendations and sustainable funding pathways to implement genomic medicine into Australian healthcare.

Undiagnosed severe intellectual disability

Joris A. Veltman1,2
1 Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
2 Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands

Severe intellectual disability (ID, IQ<50) occurs in 0.5% of newborns and is largely genetic in origin. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. In the last 15 years we have developed and applied various genomics approaches, from genomic microarrays to exome and genome sequencing, to improve the diagnostic yield in this disorder. These studies revealed the major role of rare de novo point mutations, indels and CNVs in ID, requiring a patient-parent trio-based diagnostic approach. Recently, we
applied genome sequencing to 50 patients with severe ID and their unaffected parents. Notwithstanding extensive genetic prescreening, including microarray-based CNV studies and exome sequencing, a conclusive genetic diagnosis was reached in 20 patients. This results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort.

Genomic Test Evaluation Frameworks

Robyn Ward, AM FAHMS
Deputy Vice-Chancellor (Research) and Vice President (Research)

Aims and Background: The aim of this study was to examine the theoretical and practical frameworks used to assess genomic tests world-wide, drawing on a systematic literature review and a survey of international stakeholders in genomic testing. While multiple different assessment frameworks exist, we find that no golden standard has been adopted and the majority of practical frameworks assessed share only some common assessment criteria while other are included on a tailor-made basis. These findings illustrate the challenges with which the assessment of genomic tests for reimbursement, regulatory and certification purposes grapples around the world, and indicates a need for a robust dialogue and sharing of lessons learned. Advances in genetic and genomic testing have led to a proliferation in the number and types of genetic tests available. However, large-scale genomic tests also have some potential downsides that are either absent or less of a concern for most other medical test types. For example, large-scale genomic tests can lead to unnecessary tests and treatment not only for the patient, but also for his or her genetic relatives. In addition, genome-scale tests can generate dozens of incidental findings.

Observations: Frameworks used to evaluate genetic and genomic tests often consider only benefits and risks common to most screening, predictive, diagnostic and prognostic medical tests and fail to explicitly consider risks that are specific large-scale genomic tests.

Conclusions: The ability of clinicians and reimbursement organisations to properly evaluate large-scale genomic...
tests is lagging behind the implementation of the tests themselves. Such organisations could benefit from increased information sharing and standardisation of evaluation frameworks.

Public Health Pharmacogenomics

George P. Patrinos
Associate Professor of
Pharmacogenomics and Pharmaceutical Biotechnology,
University of Patras, Greece

The central dogma of genomic medicine is to exploit an individual’s genomic profile to support the clinical decision-making process and to individualize drug treatment modalities. Also, pharmacogenomics has a pivotal role in genomic medicine aiming to delineate drug efficacy and toxicity with the underlying genomic composition in genes involved in the pharmacokinetics and pharmacodynamics of drug regimens. There are various examples of the use of genome-guided therapeutic interventions in many medical specialties, mainly oncology and cardiology. Although it is obvious that there have been major leaps in pharmacogenomic research, facilitated by the genomic technology revolution, the pace of these discoveries have not met with reciprocal advances in the translation of these findings into the clinic, resulting into the personalization of conventional therapeutic interventions. To this end, there are often significant barriers that hamper the smooth incorporation of pharmacogenomics research findings in the daily medical practice, which have to do more with disciplines related to Public Health Genomics rather than pharmacogenomics research itself. These disciplines touch upon pharmacogenomics in relation to Public Health Genomics disciplines, such as ethics in genomics, economic evaluation in genomic medicine, genome informatics and knowledgebases, and the involvement and genetics education of the various stakeholders in the field of pharmacogenomics, mostly healthcare professionals and the general public. In this lecture, results from various projects related to pharmacogenomics touching upon public health disciplines will be presented.

Undiagnosed Diseases Network International (UDNI)

Domenica Taruscio ¹, S. C. Groft ², H. Cederroth ³, B. Melegh ⁴, P. Lasko ⁵, K. Kosaki ⁶, G. Baynam ⁷, A. McCray ⁸, G. Floridia ¹, M. Salvatore ¹, M.C. De Stefano ¹, W. A. Gahl ²

¹ National Centre for Rare Diseases, IstitutoSuperiore di Sanità, Roma, Italy, ² National Institutes of Health, United States, Bethesda, MD, United States, ³ Wilhelm Foundation, Brotby, Sweden,
Undiagnosed diseases are a global health issue, calling for an international scientific and healthcare effort. In 2008, the National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) was initiated to provide diagnoses for individuals who had long sought one without success. Moreover, as a result of two international conferences (Rome 2014 and Budapest 2015), the Undiagnosed Diseases Network International (UDNI) was established, modeled in part after the NIH UDP and the recently formed US-wide Undiagnosed Diseases Network (UDN). The UDNI has published a consensus framework of principles, best practices and governance; the Board of Directors reflects its international character, as it includes experts from Australia, Canada, Hungary, Italy, Japan and the USA. The UDNI involves centers with internationally recognized expertise, and its scientific resources and know-how aim to fill the knowledge gaps that impede diagnosis. Consequently, the UDNI fosters the translation of research into medical practice. Active patient involvement is critical; the Patient Advisory Group is expected to play an increasing role in UDNI activities. After the UDNI launch (2015), several countries have activated national Networks (e.g., Australia, Italy, Austria, Japan) operating in the framework of UDNI and in collaboration with other UDNI members, who convened in Vienna in February of 2016 and in Tokyo in November of 2016 to plan for data sharing. The coming Conference will be organised in Stockholm in August 30-31, 2017. All information for physicians and patients is available at the UDNI website (http://www.udninternational.org).

The Science May be the Easy Part: Challenges and Solutions in Implementing a Molecular Diagnostic Test

James Wingrove
CardioDx

Successful implementation of a commercial molecular diagnostic test requires the correct alignment of clinical, technical, commercial and financial initiatives. To be clinically useful, it is paramount the test informs and guides meaningful clinical decisions; in addition access to the correct biological samples coupled with precise clinical data and phenotyping is important when generating the clinical trial data necessary to develop and validate the
assay. From the technical side, platform choice including reliability, reproducibility and the ability to scale can have a large impact on throughput, turnaround time, and cost. Successful commercial adoption in the clinic requires an understanding of the customer, with a primary focus on the ordering clinician and how the test will integrate into their practice, as well as the impact of the test on cost savings for the managed care system. Finally, the financial aspect of implementation can be challenging, with a potentially long pathway to viability requiring deep financial resources. Examples of these obstacles, and how they were overcome, will be illustrated using the development and commercial implementation of a peripheral blood gene expression test for the detection of obstructive coronary artery disease as an example.
The Application of Genomic Medicine in the UAE

Bassam R. Ali
Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University

Correspondence e-mail: bassam.ali@uaeu.ac.ae

The interplay between genomics and medicine led to the development of a new discipline in medicine called “Genomic Medicine”, which involves the use of genomic information about an individual as part of their clinical care. This discipline is already making a significant global impact in the fields of oncology, pharmacology, infectious diseases, rare and undiagnosed genetic conditions. The utility of genomic medicine is in providing: (1) highly accurate diagnostic tools (2) unprecedented predictive power of disease risk (3) opportunities for developing novel and personalized treatments and (4) new avenues for the development of creative prevention strategies. In recent years, we have been using molecular, genomic and cellular approaches to elucidate the underlying genetic causes and mechanisms of single gene rare disorders in the United Arab Emirates (UAE). Collectively, those disorders are particularly highly prevalent among Arab populations, including the UAE, due to the high rates of consanguinity within these populations. Our research resulted in the identification of numerous mutations in many patients with recessive disorders and the elucidation of the cellular basis of several single gene disorders. In this article, I will present examples on our approach of using next-generation whole-exome sequencing for the identification of disease genes and mutations underlying recessive disorders among Emirati families. In addition, the elucidation of the cellular mechanisms underlying some single gene disorders will be presented. Furthermore, the areas of research and development needed to implement genomic
Embryonic stem (ES) cells are characterized by their ability to self-renew and remain pluripotent. Transcription factors have critical roles in the maintenance of ES cells through specifying an ES-cell-specific gene expression program. Deciphering the transcriptional regulatory network that describes the specific interactions of these transcription factors with the genomic template is crucial for understanding the design and key components of this network. To gain insights into the transcriptional regulatory networks in ES cells, we use chromatin immunoprecipitation coupled to ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of sequence specific transcription factors. These factors are known to play different roles in ES cell biology. Our study provides new insights into the integration of these regulators to the ES cell-specific transcription circuitries. Collectively, the mapping of transcription factor binding sites identifies new features of the transcriptional regulatory networks that define ES cell identity. Using this knowledge, we investigate nodes in the network which when activated, will jump-start the ES cell-specific expression program in somatic cells.

Establishing a Global Genomics Nursing Alliance

Maggie Kirk¹, Emma Tonkin¹, Laurie Badzek², Caroline Benjamin³, Anna Middleton⁴, Kathleen Calzone⁵

¹ University of South Wales, UK; ² University of North Carolina, Wilmington, USA; ³ Merseyside & Cheshire Clinical Genetics Service/University of Central Lancashire, UK; ⁴ Wellcome Trust Sanger Institute, UK; ⁵ National Cancer Institute, Center for Cancer Research, Genetics Branch, USA

Background: Nurses have a pivotal role in bringing the benefits of genomics and precision medicine to everyday healthcare. However, concerted global effort is needed to transform nursing policy and practice and address widely acknowledged deficits in nurses’ genomic literacy. Aim: Increase nursing genomic literacy by gathering consensus from global leaders and nursing experts on key attributes of a Roadmap for action consisting of four complementary activities: 1. Building
international partnerships for collaboration, consultation, sharing, and research; 2. Establishing a Maturity Matrix to inform strategies to increase genomic literacy, improve care and benchmark progress that recognises real-world constraints; 3. Identifying existing nursing assets in genomics that could be shared throughout the international nursing community; 4. Determining key features needed for a Global Genomics Nursing Alliance (G2NA) platform to facilitate G2NA ongoing work.

Methods: A 3-day invitational Retreat utilised Liberating Structures techniques in an innovative participatory approach to a structured programme of activities. Data were gathered prior to the invitational retreat through two online scoping surveys. Additional data was collected during the 3-day invitational Retreat utilizing real time voting through Turning Point. Outcomes: 29 participants from 17 countries and 7 major organisations attended. Common challenges around education and resources included access need for resources to link genetic variation to clinical implications (64%) and limited access to point of care educational information and clinical decision support (71%). All countries reported existence of genetic specialty services but only 4 reported nursing leadership driving genomic integration in nursing. Essential action areas based on prioritised needs were agreed as: 1. Enhanced education and workforce development; 2. Effective nursing practice that builds on an evidence base, with clear delineation of nursing roles and interventions; 3. Infrastructure and resources to support education, practice and services; 4. Collaboration and communication across borders and professional groups; 5. Person, family and community-focused care; 6. Leadership in transforming healthcare through policy development. There was consensus (100%) that G2NA was an appropriate vehicle to increase genomic nursing capacity, guided by the Roadmap, and that it should seek to influence regulation and standards. Two workgroups have been established, strategic planning and funding to define G2NA operations. Additionally, expansion of the existing G2NA website (www.g2na.org) is underway, a G2NA listserv to facilitate communication has been implemented. Efforts to explore expansion of the Genetic/Genomic Competency Center for Education globally and G2NA inter-professional collaboration are underway.

Conclusion: The initiative generated considerable social capital to accelerate change across global nursing communities.

Minimum Information required for a DMET Experiment reporting
Judit Kumuthini1, Mamana Mbiyavanga1, Emile Chimusa1,2, Jyotishman Pathak3, Panu Somervuo4,
Ron HN Van Schaik5, Vita Dolzan6, Clint Mizzi7, Kusha Kalideen2, Raj S Ramesar2, Milan Macek8, George P Patrinos5,9 and Alessio Squassina10
1 Centre for Proteomic and Genomic Research, Cape Town, South Africa; 2 University of Cape Town, Cape Town, South Africa; 3 Mayo Clinic, Rochester, USA; 4 University of Helsinki, Helsinki, Finland; 5 University of Erasmus, Rotterdam, The Netherlands; 6 University of Ljubljana, Ljubljana, Slovenia; 7 University of Malta, Malta; 8 Charles University Prague & 2nd Faculty of Medicine, Prague, Czech Republic; 9 University of Patras, Patras, Greece; 10 University of Cagliari, Cagliari, Italy

Correspondence e-mail: jkumuthini@gmail.com

The DMET (Distribution, Metabolism, Excretion and Toxicity) technology has steadily advanced leading to increased demands to develop new bioinformatics software, analysis tools, algorithms, web applications and specific statistical techniques. With the advent of personalized medicine, it is evident that a large number of pilot studies will be conducted globally in the foreseeable future. Findings between different studies can be compared effectively if data reporting standards are in place. Furthermore, if data are extracted in a concise and correct manner, they can be used in subsequent experiments. We feel that quality of data supersedes quantity and using a concise method of data extraction from DMET arrays can greatly increase the experimenter's ability to sort biologically meaningful information from background noise and experimental error. Ultimately, the field of pharmacogenomics will evolve to integrate data from various omics and technology platforms. Implementing standards for submission of data for each of the various platforms (microarrays, SNP arrays, proteomics and DMET), will aid the development of pipelines able to consolidate the different platforms and the standards by which each abides. Minimum Information required for a DMET Experiment (MIDE) is proposed to provide pharmacogenomics reporting guidelines, the information and tools required for reporting to public omic databases. For effective DMET data interpretation, sharing, interoperability, reproducibility and reporting, we propose MIDE.

Pharmacogenomics of adverse drug reactions in Thailand
Surakameth Mahasirimongkol
Medical Genetics Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Thailand

Correspondence e-mail surakameth.m@dmsc.mail.go.th

In some regions, adverse drug reactions are disproportionately
affected the vulnerable populations. The fundamental to these unfortunate events are genetically mediated adverse drug reactions. The higher prevalence of the adverse drug reactions in Thailand came with the opportunity. The recent implementation of rational drug use policy incorporated the basic concept of pharmacogenomics, with the recommendation to provide pharmacogenetic tests where the health service system has access to the pharmacogenomics services. With rapid cost reduction, the implementation of pharmacogenomics become an important policy that shall provide the immediate health benefit and cost savings to the health system.

The genetic basis of common conditions: the CHRIS study
Cristian Pattaro1, Martin Gögele1, Deborah Mascalzoni1, Roberto Melotti1, Alessandro De Grandi1, Luisa Foco1, Yuri D’Elia1, Barbara Linder1, Christian Fuchsberger1, Clemens Egger1, Lisa S. Kofink1, Sigurður Smárason1, Alessandra Rossini1, Helmuth Weiss1, 2, Peter P. Pramstaller1, Francisco S. Domingues1, Andrew A. Hicks1

1Center for Biomedicine, European Academy of Bolzano/Bozen (Eurac research) (Affiliated to the University of Lübeck, Lübeck, Germany), Via Galvani 31, 39100, Bolzano/Bozen, Italy; 2Hospital of Schlanders/Silandro, Schlanders/Silandro, Italy

Correspondence e-mail: ahicks@eurac.edu

The Cooperative Health Research In South Tyrol (CHRIS) study is a population-based study with a longitudinal lookout to investigate the genetic and molecular basis of age-related common chronic conditions and their interaction with life style and environment. Adults from an Alpine valley of South Tyrol are invited, with more than 9500 participants enrolled at the start of 2017 and 13,000 anticipated by the end of 2018. This population is characterized by long-term social stability and homogeneous environment which should both favour the identification of enriched genetic variants. Family participation is encouraged for complete pedigree reconstruction and disease inheritance mapping. Extensive pedigree reconstruction is possible given the structure of the population in the valley. Computer-assisted interviews have been implemented for health assessment of the cardiovascular, endocrine, metabolic, genitourinary, nervous and cognitive systems. Fat intake, cardiac health, and tremor are assessed instrumentally. Nutrient intake, physical activity, and life-course smoking are measured semi-quantitatively. Participants are phenotyped for 70+ blood and urine parameters, and cryo-preserved urine,
DNA, and whole and fractionated blood is biobanked. Metabolite profiling, both targeted and untargeted, is being assessed through liquid-chromatography mass-spectrometry analysis. Samples are genotyped at ~1 million variants using the Illumina HumanOmniExpressExome array. The first data release including 4570 fully phenotyped and genotyped samples is now available for analysis. Whole exome sequencing of the first 4000 participants will be completed within 2017. A first follow-up is foreseen seven years after the initial baseline visit, with focused and general follow-up studies being planned in the future. The CHRIS study is producing a valuable resource to assess the contribution of genomics, metabolomics, and environmental factors to human health and disease. More specifically, it is a source of valuable data for the investigation of potential low-frequency/rare variants contributing to complex traits that are enriched in the target population. Moving forward we envisage the study will be contributing to the work of international consortia, and will provide a useful resource for integrating and testing tools aimed at integrating multi ‘omics’ data into programs aimed at improving preventative healthcare.

National Scale Precision Medicine in Singapore

Patrick Tan
Deputy Executive Director, Biomedical Research Council, A*STAR; Professor, Duke-NUS Medical School Singapore; Director, Singhealth Duke-NUS Institute of Precision Medicine (PRISM)

Correspondence e-mail patrick_tan@a-star.edu.sg

In Nov 2016, Singapore established a National Precision Medicine Program (NPMP) with the mandate to coordinate an all-of-nation effort to transform the face of Singapore healthcare. Championed by the Ministry of Health and the National Medical Research Council, the NPMP bridges multiple funding agencies and research performer units, including A*STAR, National Research Foundation, Economic Development Board, and Infocomm Media Development Authority among others. In this talk, we will describe our early progress in developing the NPMP, focusing on how this effort taps into ground-up efforts and lessons learned at the Singapore academic medical centers.
Implementing Pharmacogenomics in the Middle East developing
Yolande Saab
Lebanese American University, School of Pharmacy, Byblos, Lebanon

Correspondence e-mail: ysaab@lau.edu.lb

With the approval of pharmacogenetic testing by the FDA and the EMEA, medications have been recently used more safely and effectively, and the implementation of pharmacogenomics has become a fact. Further research is also ongoing to improve personalized patient medicine but mostly in developed countries. Pharmacogenomics information and implementation gap persists and has been highlighted in developing countries that are experiencing an exponential growth in chronic diseases; in 2020, it is estimated that 73% of deaths will be due to non-communicable diseases that can benefit from pharmacogenomics services if offered with local context to each developing country. The study aims at identifying the opportunities and challenges to overcome to contribute in making this approach feasible in the Middle East; Lebanon is a case study.

Using innovative education and training approaches
Anneke Seller¹, Michelle Bishop¹, Edward Miller¹, Sue Hill²
¹Health Education England, Birmingham, UK; ²NHS England, London, UK

Correspondence e-mail: anneke.seller@hee.nhs.uk

The success of the pioneering work of England’s 100,000 Genomes Project is enabling the National Health Service (NHS) in England to routinely commission whole genome sequencing technologies from as early as 2018 in order to improve diagnosis, inform patient and family management and personalise treatment decisions in mainstream medicine, especially in the fields of rare disease and common cancer. The requirement for the rapid and widespread adoption of genomic medicine for the 55 million population of England requires innovative, flexible and accessible approaches to the education and training of the existing 1.3 million NHS workforce, as well as the prospective healthcare workforce. The National Genomics Education Programme was established with three aims: a) to upskill the existing highly specialised workforce to deliver the 100,000 Genomes Project through a programme of specific resource development across the project pipeline b) to build genomic capacity and capability in the current and prospective healthcare workforce.
through the launch of new accredited professional training and academic curricula and courses including creating new specialisms such as clinical bioinformatics, and the development and funding of a multi professional Master’s in Genomic Medicine and c) to support widespread adoption of genomics across the wider workforce through the development of communities of practice, including a network of training and education leads and the launch of a new NHS Faculty of Genomic Medicine. Using exemplars from across our extensive portfolio of work we will present data on resource uptake and learner experience to demonstrate the impact of our comprehensive and underpinning education and training framework for all healthcare professionals at all stages of the genomics education continuum for the rapid adoption of genomic medicine in the NHS. We will also discuss how this approach could be transferred to other international healthcare systems and populations.

Several HLA-B alleles are observed in carbamazepine induced

Several HLA-B alleles are observed in carbamazepine induced steven-johnson syndrome/ toxic epidermal necrolysis (SJS/TEN) patients in the Indonesian population. Carbamazepine (CBZ) is one of the most common causes of life-threatening cutaneous adverse drug reactions such as Stevens–Johnson syndrome (SJS) and toxic epidermal necrosis (TEN). Previous studies have revealed a strong association between HLA-B*15:02 and CBZ-induced SJS/TEN. This study is aimed to investigate which HLA-B alleles are commonly observed in the CBZ-induced SJS/TEN
patients in the Indonesian population. In total 9 cases of Carbamazepine-induced SJS/TEN were genotyped for HLA-B using Wakflow HLA typing kit combined with Luminex assay. About 77.78% HLA-B*15:02 allele was found in the patient with CBZ-induced SJS/TEN. Additionally, we also found 18.18% of HLA-B*15:21 allele, which is classified in the same group of B75 serotype with HLA B*15:02 in the patient samples. In total, B75 were observed in 88.89% of samples. Interestingly, in this study we also observed the presence of HLA-B*18:01 allele with frequency of 33.33%. The other allele in the same group with HLA-B*18:01, HLA-B*44:03 is also observed. Both alleles belong to B44 supertype (in total 55.56% of the samples). Our finding showed that not only HLA-B*5:02, but also other HLA alleles in B75 serotype and B44 supertype can be the potential markers of Carbamazepine induced SJS/TEN in the Indonesian population. Further study is necessary to confirm the association between CBZ-induced SJS/TEN with the allele groups.
PARTICIPANTS CONTACT DETAILS

Dr. Takeya Adachi
Japan Agency for Medical Research and Development (AMED)
22F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, 100-0004 Tokyo, Japan
Email: jpn4156@me.com

Prof. Clement Adebamowo
Department of Epidemiology and Public Health, University of Maryland
725 West Lombard St. Suite 445, Baltimore, MD, USA
Email: cadebamowo@som.umaryland.edu

Prof. Spiros Agathos
School of Biological Sciences & Engineering, Yachay Tech University
Hacienda San José, 100119, San Miguel de Urcuquí, Ecuador
Email: sagathos@yachaytech.edu.ec

Prof. Bassam R.Ali
Department of Pathology, UAE University
Al-Ain, UAE
Email: bassam.ali@uae.ac.ae

Prof. Fahd Al-Mulla
Department of Pathology, Kuwait University
Jabriya, 13110, Kuwait
Email: fahd@al-mulla.org

Ms. Julia Angeles
Healthcare
Baillie Gifford, Greased Row, 1 Calton Square, EH13AN Edinburgh, Scotland
Email: julia.angeles@bailliegifford.com

Dr. Darrol Baker
The Golden Helix Foundation
16, Northumberland avenue, Craven House, WC2N 5AP London, United Kingdom
Email: d.baker@goldenhelix.org

Ms. Aggeliki Balasopoulou
Department of Pharmacy, University of Patras
University Campus, Rion GR-26506, Patras, Greece
Email: agg_balasopoulou@hotmail.com
Dr. Marina Bartsakoulia
Department of Pharmacy, University of Patras
University Campus, Rion GR-26504, Patras, Greece
Email: marinabartsakoulia@gmail.com

Dr. Doron Behar
Department of Community Medicine and Epidemiology, Carmel Medical Center
2 Horev Str, 34362, Haifa, Israel
Email: cmddoron@clalit.org.il

Ms. Claire Bell
Healthcare
Baillie Gifford, Greased Row, 1 Calton Square, EH13AN
Edinburgh, Scotland
Email: clairest.bell@gmail.com

Dr. Cindy L. Bell
Genome Canada
150 Metcalfe Street, Suite 2100, K2P 1P1
Ottawa, Canada
Email: cbell@genomecanada.ca

Dr. David Bentley
Department of Research and Development, Illumina Inc
Chesterford Research Park, Little Chesterford, CB10 1XL
Saffron Walden, United Kingdom
Email: dbentley@illumina.com

Dr. Francois Bernier
Department of Medical Genetics, University of Calgary
3330 Hospital Drive NW, T2N 4N1, Calgary, Canada
Email: francois.bernier@albertahealthservices.ca

Prof. Jeffrey Braithwaite
Australian Institute of Health Innovation, Macquarie University
Level 6, 75 Talavera Rd, 2109, Sydney, Australia
Email: jackie.mullins@mq.edu.au

Ms. Kathleen Calzone
Center for Cancer Research, Genetics Branch, National Cancer Institute
37 Convent Drive, Building 37, RM 3039, Bethesda, MD, USA
Email: calzonek@mail.nih.gov

Ms. Melody Caramins
Sydney, Australia
Email: melody.caramins@sdspathology.com.au

Prof. Mark Caulfield
Genomics England
William Harvey Heart Centre, EC1M 6BQ
London, United Kingdom
Email: m.j.caulfield@qmul.ac.uk

Ms. Konstantina Chalikiopoulou
Department of Pharmacy, University of Patras
University Campus, Rion GR-26507, Patras, Greece
Email: constantina_xal@yahoo.gr
Prof. Wasun Chantratita
Department of Pathology, Ramathibodi Hospital
Mahidol University 270, 10400, BKK, Thailand
Email: wasun.cha@mahidol.ac.th

Dr. Konstantinos Chassomeris
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: chassome@yahoo.gr

Ms. Vasiliki Chondrou
Hellenic Open University
Patras, Greece
Email: vasiliki.chondrou@gmail.com

Ms. Lena Dolman
Global Alliance for Genomics and Health
Canada
Email: lena.dolman@genomicsandhealth.org

Dr. Francisco Domingues
Center for Biomedicine, EURAC
Via Galvani 31, 39100 Bolzano, Italy
Email: francisco.domingues@eurac.edu

Prof. Victor Dzau
National Academy of Medicine
500 5th st. NW, 20001
Email: vdzau@nas.edu

Dr. Khalid Fakhro
Department of Genetic Medicine
Sidra Medical and Research Center
PO Box 26999, Doha, Qatar
Email: KFAKHR@SIDRA.ORG

Mr. Peter Fromen
Population Sequencing, Illumina Inc.
Chesterford Research Park, Little Chesterford, CB10 1XL
Saffron Walden, United Kingdom
Email: pfromen@illumina.com

Prof. Geoffrey Ginsburg
Duke Center for Applied Genomics and Precision Medicine, Duke University
101 Science Drive, 27705, Durham, NC, USA
Email: geoffrey.ginsburg@duke.edu

Mr. Peter Goodhand
Global Alliance for Genomics and Health
661 University Avenue, Suite 510, M5G 0A3
Toronto, Ontario, Canada
Email: peter.goodhand@genomicsandhealth.org

Prof. Godfrey Grech
Department of Pathology, University of Malta
Tal-Qroqq, MSD 2090, Msida, Malta
Email: godfrey.grech@um.edu.mt

Dr. Naomi Gronich
Clalit National Personalized Medicine Program and Technion
2 Horev Street, 34362 Haifa, Israel
Email: gronichn@clalit.org.il
Ms. Panagiota Grypioti
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: pha2594@upnet.gr

Prof. Lovemore Gwanzura
Department of Medical Laboratory Sciences, College of Health Sciences
Box 1A 178 Avondale, Harare, Zimbabwe
Email: gwanzura@mweb.co.zw

Dr. Bok-Ghee Han
Center for Genome Science, Korea National Institute of Health
187 Osongsaengmyeong2-ro, 363-951, Osong-eup, Korea
Email: bokghee@korea.kr

Dr. Andrew Hicks
Center for Biomedicine, EURAC
Via Galvani 31, 39100 Bolzano, Italy
Email: ahicks@eurac.edu

Prof. Sue Hill
NHS England
Skipton House, 80 London Road, SE1 6LH
London, United Kingdom
Email: sue.l.hill@nhs.net

Ms. Tricia Huang
National Medical Research Council, Ministry of Health
College of Medicine Building, 16 College Road,
169854 Singapore, Singapore
Email: tricia_huang@moh.gov.sg

Prof. Magnus Ingelman-Sundberg
Karolinska Institutet
Stockholm, Sweden
Email: magnus.ingelman-sundberg@ki.se

Prof. Federico Innocenti
Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill
120 Mason Farm Rd., CB# 7361, 27599-7361, Chapel Hill, NC, USA
Email: innocent@email.unc.edu

Dr. Said Ismail
Qatar Foundation
Doha, Qatar
Email: saismail@qf.org.qa

Dr. Summerpal Kahlon
Oracle
718 Monterey Drive, 32937, Satellite Beach, FL, USA
Email: summer.kahlon@oracle.com

Dr. Marios Kambouris
Department of Pathology and Genetics, Sidra Medical and Research Center
PO Box 26999, Doha, Qatar
Email: mkambouris@sidra.org

Prof. Norihiro Kato
Gene Diagnostics and Therapeutics Research Institute, National Center for Global Health and Medicine
1-21-1 Toyama, 162-8655, Shinjuku-ku, Japan
Email: nokato@ri.ncgm.go.jp
Dr. Theodora Katsila
Department of Pharmacy, University of Patras
University Campus, Rion GR-26504, Patras, Greece
Email: thkatsila@upatras.gr

Prof. Bruce Korf
Department of Genetics, University of Alabama at Birmingham
1720 2nd Ave. S., Kaul 230, 35294, Birmingham, AL, USA
Email: bkorf@uabmc.edu

Dr. Changhoon Kim
Bioinformatics Institute, Macrogen Inc.
Seoul, South Korea
Email: kimchan@macrogen.com

Dr. Yeonjung Kim
Center for Genome Science, Korea National Institute of Health
Seoul, South Korea
Email: yeonmaru@gmail.com

Prof. Maggie Kirk
Genomics Policy Unit, University of South Wales
Glyntaf Campus, CF37 1DL, Pontypridd, Wales
Email: maggie.kirk@southwales.ac.uk

Dr. Judit Kumuthini
Department of Bioinformatics, CPGR
Anzio Rd, 7925, Cape Town, South Africa
Email: jkumuthini@gmail.com

Mr. Alberto Lecaros
Faculty of Medicine, Universidad del Desarrollo
Av. Las Condes 12.348, 7690000, Santiago, Chile
Email: jlecaros@udd.cl

Ms. Yixue Li
CAS-MPG Partner Institute for Computational Biology
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Shanghai, 200031, China
Email: yxli@sibs.ac.cn

Ms. Alexandra Kolliopoulou
Department of Pharmacy, University of Patras
University Campus, Rion GR-26511, Patras, Greece
Email: kolliopouloualexandra@gmail.com

Mr. Jianjun Liu
Department of Human Genetics, Genome Institute of Singapore
60 Biopolis Street, 138672 Singapore, Singapore
Email: liuj3@gis.a-star.edu.sg

Ms. Maritina Kontogianni
Department of Pharmacy, University of Patras
University Campus, Rion GR-26516, Patras, Greece
Email: maritinakontogian@gmail.com

Dr. Catalina Lopez-Correa
Genome British Columbia, Canada
Email: clopez@genomebc.ca
Dr. Laura Lyman Rodriguez
Division of Policy, Communications & Education, NIH/NHGRI
000 Rockville Pike, 31 Center Drive,
20852, Bethesda, MD, USA
Email: rodrigla@mail.nih.gov

Dr. Surakameth Mahasirimongkol
Department of Medical Sciences, Ministry of Public Health
88/7 Tivanont Road, 11000, Nonthaburi, Thailand
Email: surakameth.m@dmsc.mail.go.th

Dr. Saqib Mahmoud
Department of Human Genetics & Molecular Biology, University of Health Sciences
Khayaban-e-Jamia Punjab, 54600, Lahore, Pakistan
Email: medgen@uhs.edu.pk

Dr. Teri Manolio
Division of Genomic Medicine, National Human Genome Research Institute
5635 Fishers Lane, Rm 4113, MSC 9305, 20892-9305 Bethesda, MD, 20892, USA
Email: manolio@nih.gov

Prof. Vangelis Manolopoulos
Department of Medicine, Democritus University of Thrace
Laboratory of Pharmacology, Dragana Campus, Alexandroupolis, Greece
Email: emanolop@med.duth.gr

Mr. Edward Marootian, Jr.
Oracle
10 Van de Graaff Drive, 01803, Burlington, MA, USA
Email: emarootian@gmail.com

Prof. Collen Masimirembwa
Genomic Medicine, African Institute of Biomedical Science and Technology
Wilkins Hospital, 2294 Harare, Zimbabwe
Email: collen.masimirembwa@aibst.com

Mr. Edward Marootian, Jr.
Oracle
10 Van de Graaff Drive, 01803, Burlington, MA, USA
Email: emarootian@gmail.com

Prof. Collen Masimirembwa
Genomic Medicine, African Institute of Biomedical Science and Technology
Wilkins Hospital, 2294 Harare, Zimbabwe
Email: collen.masimirembwa@aibst.com

Dr. Minos Timotheos Matsoukas
Department of Pharmacy, University of Patras
University Campus, Rion GR-26505, Patras, Greece
Email: minmatsoukas@gmail.com

Prof. Gert Matthijs
Center for Human Genetics, KU Leuven
Herestraat 49, ON1, PB602, 3000, Leuven, Belgium
Email: gert.matthijs@kuleuven.be

Ms. Effrosyni Mendrinou
Department of Pharmacy, University of Patras
University Campus, Rion GR-26508, Patras, Greece
Email: evelinako@windowslive.com

Ms. Varvara Mitseli
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: varv.mits05@gmail.com
Prof. Satoru Miyano
Human Genome Center, The University of Tokyo
4-6-1 Shirokanedai, Minatoku, 108-8639, Tokyo, Japan
Email: miyano@ims.u-tokyo.ac.jp

Ms. Angeliki Panagiotara
Department of Pharmacy, University of Patras
University Campus, Rion GR-26512, Patras, Greece
Email: apanagiotara@yahoo.gr

Mr. Anastasios Mpitsakos
Department of Pharmacy, University of Patras
University Campus, Rion GR-26514, Patras, Greece
Email: tmpitsakos@gmail.com

Ms. Styliani Papadaki
Department of Pharmacy, University of Patras
University Campus, Rion GR-26517, Patras, Greece
Email: stelpapha@gmail.com

Prof. Huck Hui Ng
Agency for Science, Technology and Research, Genome Institute of Singapore (A*STAR)
60 Biopolis Street #02-01 Genome Building, 138672 Singapore, Singapore
Email: nghh@gis.a-star.edu.sg

Mr. Theofanis Papadopoulos
Department of Molecular Genetics, Karyon Ltd
51, Ermou street, Thessaloniki, Greece
Email: papadopoulous@karyo.gr

Mrs. Fiona Nielsen
Repositive Future Business Centre
Kings Hedges Road, CB4 2HY, Cambridge, United Kingdom
Email: fiona@repositive.io

Ms. Ioanna Papantoni
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: ioannapapa@upatras.gr

Ms. Maria Oplopoioi
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: moplopoioi@gmail.com

Prof. George P. Patrinos
Department of Pharmacy, University of Patras
University Campus, Rion GR-26504, Patras, Greece
Email: gpatrinos@upatras.gr

Dr. Lori Orlando
Department of Medicine, Duke University
3475 Erwin Rd, 27705
Email: lorlando@duke.edu

Prof. Munir Pirmomahed
Department Molecular and Clinical Pharmacology, University of Liverpool
1-5 Brownlow street, L693 GL, Liverpool, UK
Email: munirp@liverpool.ac.uk
Ms. Dimitra Pitropaki
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: markella.pitropaki@yahoo.com

Prof. Juergen Reichardt
YachayTech University
Quito, Ecuador
Email: jreichardt@yachaytech.edu.ec

Prof. Gad Rennert
Clalit National Personalized Medicine Program
2 Horev Str, 34362, Haifa, Israel
Email: rennert@tx.technion.ac.il

Dr. Gabriela Repetto
Department of Genetics and Genomics, Clinica Alemana-U del DESARROLLO
Avda Las Condes 12438, 7710162, Santiago, Chile
Email: grepetto@udd.cl

Dr. Laura Rodriguez
National Human Genome Research Institute, National Institutes of Health
9000 Rockville Drive, 31 Center Drive, Suite 4B09, 20852Bethesda, MD, USA
Email: perrineaud@mail.nih.gov

Mr. Carsten Rosenow
Department of Market Development, Illumina Inc.
USA
Email: crosenow@illumina.com

Dr. Yolande Saab
Department of Pharmacy, Lebanese American University
Lebanon
Email: ysaab@lau.edu.lb

Mr. Kostas Sarris
Department of Pharmacy, University of Patras
University Campus, Rion GR-26518, Patras, Greece
Email: kostas.sarris.ceid@gmail.com

Dr. Anneke Seller
Genomics Education Programme, Health Education England
Hagley Road, B16 9RG
Birmingham, United Kingdom
Email: anneke.seller@hee.nhs.uk

Mr. Jeong Sun Seo
Seoul National University
Rm 403 Medical Science BD 103
DAEHANG-RO, CHONGNO-GU, 03080
Seoul, South Korea
Email: jeongsunseo@gmail.com

Prof. Chen-Yang Shen
Institute of Biomedical Sciences, Academia Sinica
N143, IBMS, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan
Email: bmcys@ibms.sinica.edu.tw

Prof. Alan Shuldiner
Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc
777 Saw Mill River Road, 10591, Tarrytown, NY, USA
Email: alan.shuldiner@regeneron.com
Ms. Stavroula Siamoglou
Department of Pharmacy, University of Patras
University Campus, Rion GR-26513, Patras, Greece
Email: stavroula.siamoglou@gmail.com

Prof. Andrew Sinclair
Murdoch Children's Research Institute
Melbourne, Australia
Email: andrew.sinclair@mcri.edu.au

Mr. Apostolos Stratopoulos
Department of Pharmacy, University of Patras
University Campus, Rion GR-26510, Patras, Greece
Email: eiro13@yahoo.gr

Prof. Guilherme Suarez-Kurtz
Department of Pharmacology, Brazilian Pharmacogenomics Network
Rua Garcia Davila 65, 22421-010, Rio de Janeiro, Brazil
Email: kurtz.guilherme@gmail.com

Dr. Chonlaphat Sukasem
Department of Pathology, Ramathibodi Hospital
Mahidol University 270, 10400 BKK, Thailand
Email: chonlaphat.suk@mahidol.ac.th

Prof. Jesse Swen
Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center; Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
Email: jj.swen@lumc.nl

Dr. Fumihiko Takeuchi
Research Institute, National Center for Global Health and Medicine
1-21-1 Toyama, 162-8655, Shinjuku-ku, Japan
Email: ftakeuchi@ri.ncgm.go.jp

Prof. Patrick Tan
Biomedical Research Council, Agency for Science and Technology and Research
20 Biopolis Way #07-01 Centros
Singapore 138668 Singapore, Singapore
Email: patrick_tan@a-star.edu.sg

Ms. Sotiria Tsekoura
Department of Pharmacy, University of Patras
University Campus, Rion GR-26519, Patras, Greece
Email: pha2371@upnet.gr

Dr. Evangelia-Eirini Tsermpini
Department of Pharmacy, University of Patras
University Campus, Rion GR-26509, Patras, Greece
Email: ee.tsermpini@gmail.com

Dr. Fumihiko Takeuchi
Research Institute, National Center for Global Health and Medicine
1-21-1 Toyama, 162-8655, Shinjuku-ku, Japan
Email: ftakeuchi@ri.ncgm.go.jp

Prof. Patrick Tan
Biomedical Research Council, Agency for Science and Technology and Research
20 Biopolis Way #07-01 Centros
Singapore 138668 Singapore, Singapore
Email: patrick_tan@a-star.edu.sg

Ms. Sotiria Tsekoura
Department of Pharmacy, University of Patras
University Campus, Rion GR-26519, Patras, Greece
Email: pha2371@upnet.gr

Dr. Evangelia-Eirini Tsermpini
Department of Pharmacy, University of Patras
University Campus, Rion GR-26509, Patras, Greece
Email: ee.tsermpini@gmail.com

Mr. George Tsioumas
Department of Pharmacy, University of Patras
University Campus, Rion GR-26521, Patras, Greece
Email: gtat295@gmail.com
Prof. Joris Veltman
Institute of Genetic Medicine, Newcastle University
Central Parkway, NE1 3BZ, Newcastle upon Tyne, United Kingdom
Email: joris.veltman@ncl.ac.uk

Prof. Robyn Ward
Deputy Vice-Chancellor (Research), University of Queensland
St Lucia, 4072 Brisbane, Australia
Email: r.ward@uq.edu.au

Prof. Marc S. Williams
Genomic Medicine Institute, Geisinger Health System
100 N Academy Drive Mail Stop 26-20, 17822-2620 Danville, PA, USA
Email: mswilliams1@geisinger.edu

Dr. James Wingrove
CardioDx
600 Saginaw, 94063 Redwood City, CA, USA
Email: jwingrove@cardiodx.com

Dr. Rika Yuliwulandari
Department of Pharmacology, YARSI University
Jl. Letj. Soeprapto Cempaka Putih, 10510, Jakarta, Indonesia
Email: rika_yuliwulandari@yahoo.co.uk

Ms. Crystalia Vassiliki Zafeiri
Department of Pharmacy, University of Patras
University Campus, Rion GR-26520, Patras, Greece
Email: crystaliazafeiri@gmail.com

Mr. Konstantinos Tsesmelis
School of Medicine, University of Thessaly
Larissa, Greece

Dr. Ambroise Wonkam
Division of Human Genetics, Faculty of Health Sciences - University of Cape Town
Anzio Road - Observatory -7925, Cape Town, South Africa
Email: ambroise.wonkam@uct.ac.za

Mr. Grant Wood
Clinical Genetics Institute, Intermountain Healthcare
Salt Lake City, UT, USA
Email: grant.wood@imail.org

Mr. Martin Reese
Fabric Genomics
Oakland, CA, USA
Email: mreese@fabricgenomics.com

Mr. Anastasios Mitsakos
Choremio Research Center, University of Athens
Athens, Greece

Ms. Eleni Ntoumou
School of Medicine, University of Thessaly
Larissa, Greece

Ms. Maria Svingkou
Choremio Research Center, University of Athens
Athens, Greece
Dr. Marc Abramowicz
Université Libre de Bruxelles, Brussels, Belgium
Email: Marc.Abramowicz@erasme.ulb.ac.be

Dr. Jill Hagenkord
Color, Los Altos, CA, USA
Email: jhagenk@gmail.com

Prof. Paul F. Lasko
Department of Biology, McGill University, Montreal, Quebec, Canada
Email: Paul.lasko@mcgill.ca

Ms. Alindrina Mangubat
Fabric Genomics, Oakland, CA, USA
Email: amangubat@fabricgenomics.com

Dr. Jana Makedonska
IC Per Med, EC
Email: Jana.MAKEDONSKA@ec.europa.eu

Prof. Collet Dandara
Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
Email: collet.dandara@uct.ac.za

Prof. Stylianos E. Antonarakis
Faculty of Medicine, University of Geneva, Geneva, Switzerland
Email: Stylianos.Antonarakis@unige.ch

Dr. Charity Nofziger
Paracelsus Medical University, Salzburg, Austria
Email: charity.nofziger@me.com

Dr. Markus Paulmichl
Austrian Institute of Technology, Seibersdorf, Austria
Email: markus.paulmichl@pmu.ac.at

Ms. Marilou Ramos-Pamplona
GIGA Institute, University of Liège, Liège, Belgium
Email: marilou.ramospamplona@ulg.ac.be